Retekx.com is a specialized generative AI platform that leverages NVIDIA's Stable Diffusion SDK to deliver state-of-the-art image synthesis capabilities. Our platform provides enterprise- grade image generation solutions optimized for both cloud and on-premises deployments.
1. Install the NVIDIA CUDA Toolkit:
sudo apt update
sudo apt install cuda
Follow the steps below to download and configure NVIDIA TensorRT:
# Download TensorRT
wget https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/8.5.0/local_repos/
nv-tensorrt-local-repo-ubuntu2004-8.5.0-cuda-11.8_1.0-1_amd64.deb
# Install TensorRT
sudo dpkg -i nv-tensorrt-local-repo-ubuntu2004-8.5.0-cuda-11.8_1.0-1_amd64.deb
sudo apt update
sudo apt install tensorrt
pip install retekx-sdk
http
Authorization: Bearer <your_api_key>
Text-to-Image
http
POST /api/v1/generate-image
Content-Type: application/json
{ "prompt": "<description>", "negative_prompt": "<avoidance>", "width": 1024, "height": 1024, "num_inference_steps": 50, "guidance_scale": 7.5, "seed": 12345 }
Image-to-Image
http
POST /api/v1/image-to-image
Content-Type: multipart/form-data
{ "image": "<base64_encoded_image>", "prompt": "<description>", "strength": 0.8, "guidance_scale": 7.5 }
Basic Image Generation:
python
from retekx import Client client = Client(api_key="your_api_key") response = client.generate_image( prompt="A photorealistic landscape of a mountain lake at sunset", width=1024, height=1024, num_inference_steps=50 )
Batch Generation:
responses = client.generate_image_batch( prompts=["landscape 1", "landscape 2"], batch_size=2, width=1024, height=1024 )
Description: The text generation module enables the creation of natural language content based on user-defined prompts. It is ideal for applications such as chatbots, content creation, and code generation.
Description: Generate high-quality images based on text descriptions or reference inputs. This module is ideal for design, entertainment, and marketing.
from retekx import Client
client = Client(api_key="your_api_key")
# Initialize fine-tuning job
job = client.create_finetune_job(
training_data="path/to/images",
prompt_data="path/to/prompts.json",
epochs=1000,
learning_rate=1e-5
)
# Monitor progress
status = client.get_finetune_status(job_id=job.id)