Table of Contents

1. Introduction to Retekx.com

  • 1.1 Overview
  • 1.2 Core Features
  • 1.3 System Requirements

2. Getting Started

  • 2.1 Installation and Setup
  • 2.2 Supported Platforms

3. Stable Diffusion Integration

  • 3.1 NVIDIA Optimizations
  • 3.2 Model Architecture

4. API Reference

  • 4.1 Authentication
  • 4.2 Image Generation Endpoints
  • 4.3 Python SDK Examples

5. Advanced Features

  • 5.1 Model Fine-tuning
  • 5.2 Inference Optimization

6. Performance Guidelines

  • 6.1 Recommended Batch Sizes
  • 6.2 Resolution vs Performance

7. Rate Limits and Quotas

  • 7.1 API Limits

Get Setup

1. Introduction to Retekx.com

1.1 Overview

Retekx.com is a specialized generative AI platform that leverages NVIDIA's Stable Diffusion SDK to deliver state-of-the-art image synthesis capabilities. Our platform provides enterprise- grade image generation solutions optimized for both cloud and on-premises deployments.

1.2 Core Features
  • Advanced text-to-image generation with Stable Diffusion
  • Multi-style image synthesis with customizable parameters
  • High-resolution output support up to 4096x4096
  • Batch processing capabilities for enterprise workloads
  • Fine-tuning support for custom image generation models
1.3 System Requirements
  • Hardware

    • NVIDIA GPU with CUDA support (Minimum 8GB VRAM)
    • Recommended: NVIDIA A100, V100, or RTX 4090
    • System Memory: 16GB RAM minimum, 32GB recommended
  • Software

    • Ubuntu 20.04+ or Windows 10/11
    • NVIDIA CUDA Toolkit (v11.8 or later)
    • NVIDIA TensorRT (v8.5 or later)
2. Getting Started
2.1 Installation and Setup

1. Install the NVIDIA CUDA Toolkit:

sudo apt update
sudo apt install cuda
2. Configure NVIDIA TensorRT:

Follow the steps below to download and configure NVIDIA TensorRT:

# Download TensorRT
wget https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/8.5.0/local_repos/
nv-tensorrt-local-repo-ubuntu2004-8.5.0-cuda-11.8_1.0-1_amd64.deb # Install TensorRT sudo dpkg -i nv-tensorrt-local-repo-ubuntu2004-8.5.0-cuda-11.8_1.0-1_amd64.deb sudo apt update sudo apt install tensorrt
3. Install Retekx SDK:
pip install retekx-sdk
2.2 Supported Platforms
  • Cloud: Google Cloud Platform (GCP), AWS, Azure
  • On-premises: NVIDIA DGX Systems, custom GPU clusters
  • Edge: Compatible with NVIDIA Jetson devices
3. Stable Diffusion Integration
3.1 NVIDIA Optimizations
Retekx leverages NVIDIA's optimized Stable Diffusion pipeline featuring:
  • FP16 precision support for faster inference
  • Attention block optimization
  • Memory-efficient cross-attention
  • Dynamic batch processing
  • Automated mixed precision (AMP)
3.2 Model Architecture
Our implementation uses NVIDIA's optimized UNet architecture with:
  • Enhanced attention mechanisms
  • Optimized memory usage
  • Cross-frame attention for consistency
  • Custom CLIP text encoder integration
  • Neural network training and inference
  • Parallel processing for faster outputs
4. API Reference
4.1 Authentication

http

Authorization: Bearer <your_api_key>

4.2 Image Generation Endpoints

Text-to-Image

http

POST /api/v1/generate-image

Content-Type: application/json

          {
            "prompt": "<description>",
            "negative_prompt": "<avoidance>",
            "width": 1024,
            "height": 1024,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "seed": 12345
          }
          

Image-to-Image

http

POST /api/v1/image-to-image

Content-Type: multipart/form-data

          {
            "image": "<base64_encoded_image>",
            "prompt": "<description>",
            "strength": 0.8,
            "guidance_scale": 7.5
          }
          
4.3 Python SDK Examples

Basic Image Generation:

python

          from retekx import Client
          client = Client(api_key="your_api_key")
          response = client.generate_image(
            prompt="A photorealistic landscape of a mountain lake at sunset",
            width=1024,
            height=1024,
            num_inference_steps=50
          )
          

Batch Generation:

          responses = client.generate_image_batch(
            prompts=["landscape 1", "landscape 2"],
            batch_size=2,
            width=1024,
            height=1024
          )
          
5. Modules and Capabilities
Retekx.com offers modular AI capabilities that cater to diverse generative needs. Each module is optimized using NVIDIA SDKs for performance and scalability.
5.1 Text Generation

Description: The text generation module enables the creation of natural language content based on user-defined prompts. It is ideal for applications such as chatbots, content creation, and code generation.

Key Features:
  • Context-aware text creation.
  • Adjustable creativity parameters (temperature, top_p).
  • Multi-language support.
5.2 Image Synthesis

Description: Generate high-quality images based on text descriptions or reference inputs. This module is ideal for design, entertainment, and marketing.

Key Features:
  • Style customization using GANs (Generative Adversarial Networks).
  • Support for resolution upscaling with NVIDIA's DLSS (Deep Learning Super Sampling).
  • Text-to-image pipeline with fine-grained control.
5. Advanced Features
5.1 Model Fine-tuning
from retekx import Client

client = Client(api_key="your_api_key")
# Initialize fine-tuning job
job = client.create_finetune_job(
    training_data="path/to/images",
    prompt_data="path/to/prompts.json",
    epochs=1000,
    learning_rate=1e-5
)
# Monitor progress
status = client.get_finetune_status(job_id=job.id)
5.2 Inference Optimization
  • Dynamic batch size adjustment
  • Automatic memory management
  • Pipeline parallelization
  • Attention optimization
6. Performance Guidelines
6.1 Recommended Batch Sizes
  • A100 80GB: Up to 32 images per batch
  • V100 32GB: Up to 16 images per batch
  • RTX 4090 24GB: Up to 8 images per batch
6.2 Resolution vs Performance
Resolution Impact on VRAM:
  • 512x512: Base memory usage
  • 1024x1024: 4x base memory
  • 2048x2048: 16x base memory
7. Rate Limits and Quotas
7.1 API Limits
  • Free tier: 100 images/day
  • Pro tier: 1000 images/day
  • Enterprise tier: Custom limits
7.2 Concurrent Requests
  • Maximum concurrent requests: 10
  • Batch size limits: Based on subscription tier
  • Rate limiting: 100 requests per minute